Action-Gons: Action Recognition with a Discriminative Dictionary of Structured Elements with Varying Granularity

نویسندگان

  • Yuwang Wang
  • Baoyuan Wang
  • Yizhou Yu
  • Qionghai Dai
  • Zhuowen Tu
چکیده

This paper presents “Action-Gons”, a middle level representation for action recognition in videos. Actions in videos exhibit a reasonable level of regularity seen in human behavior, as well as a large degree of variation. One key property of action, compared with image scene, might be the amount of interaction among body parts, although scenes also observe structured patterns in 2D images. Here, we study highorder statistics of the interaction among regions of interest in actions and propose a mid-level representation for action recognition, inspired by the Julesz school of n-gon statistics. We propose a systematic learning process to build an over-complete dictionary of “Action-Gons”. We first extract motion clusters, named as action units, then sequentially learn a pool of action-gons with different granularities modeling different degree of interactions among action units. We validate the discriminative power of our learned action-gons on three challenging video datasets and show evident advantages over the existing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

End-to-End Fine-Grained Action Segmentation and Recognition Using Conditional Random Field Models and Discriminative Sparse Coding

Fine-grained action segmentation and recognition is an important yet challenging task. Given a long, untrimmed sequence of kinematic data, the task is to classify the action at each time frame and segment the time series into the correct sequence of actions. In this paper, we propose a novel framework that combines a temporal Conditional Random Field (CRF) model with a powerful frame-level repr...

متن کامل

Sparse Dictionary Learning and Domain Adaptation for Face and Action Recognition

Title of dissertation: SPARSE DICTIONARY LEARNING AND DOMAIN ADAPTATION FOR FACE AND ACTION RECOGNITION Qiang Qiu, Doctor of Philosophy, 2013 Dissertation directed by: Professor Rama Chellappa Department of Computer Science New approaches for dictionary learning and domain adaptation are proposed for face and action recognition. We first present an approach for dictionary learning of action att...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

Learning Discriminative Activated Simplices for Action Recognition

We address the task of action recognition from a sequence of 3D human poses. This is a challenging task firstly because the poses of the same class could have large intra-class variations either caused by inaccurate 3D pose estimation or various performing styles. Also different actions, e.g., walking vs. jogging, may share similar poses which makes the representation not discriminative to diff...

متن کامل

Sparse Dictionary-based Attributes for Action Recognition and Summarization

We present an approach for dictionary learning of action attributes via information maximization. We unify the class distribution and appearance information into an objective function for learning a sparse dictionary of action attributes. The objective function maximizes the mutual information between what has been learned and what remains to be learned in terms of appearance information and cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014